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A B S T R A C T

The derived cetane number (DCN) is a commonly used metric that summarizes fuel ignition characteristics,
including ignition propensity and chemical kinetic potential for combustion processes. Traditional methods for
determining the DCN of jet fuels are ASTM standards that involve large-scale, laboratory-based experiments.
While recent advancements include the estimation of DCN via nuclear magnetic resonance (NMR) and infrared
spectroscopy, the search persists for a method capable of real-time and in-situ estimations. This work proposes
the use of a compact time-domain NMR (TD-NMR) system for the acquisition of jet fuel 𝑇2 relaxation curves.
The system is validated using relaxometric experiments and demonstrates the ability to acquire consistent,
structurally viable data on a time-scale of just minutes. Furthermore, an interpretable approach for relaxometric
data analysis is presented, allowing for the estimation of a sample’s DCN directly from its 𝑇2 relaxation curve.
Random forests are trained for DCN prediction on both hydrocarbon and jet fuel samples, and the importance
of extracted 𝑇2 curve features are investigated using both the permutation of out-of-bag predictors and partial
dependence plots. A model trained on less than 200 total relaxation curves is tested using two novel jet fuel
samples, with predictions achieving an RMSE of just 0.96 DCN. Finally, the applicability and limitations of
the proposed scheme are discussed.
1. Introduction

Jet fuels play a critical role in the aviation industry, serving as the
primary source of energy for aircraft engines. Even with advances in
all-electric aircraft, combustion engines that rely on liquid hydrocarbon
fuels derived from natural gas, petroleum, coal, and other sustainable
sources will remain dominant for decades or perhaps the century [1,2].
One of the key parameters that defines the ignition characteristics
and combustion behavior of jet fuels is the derived cetane number
(DCN). The DCN provides an indication of a fuel’s ignition propensity
and chemical kinetic potential for combustion processes, influencing
factors such as combustion efficiency, emissions, and overall engine
performance [3]. Traditionally, the DCN of jet fuels has been de-
termined using laboratory-based methods, such as ASTM D7768 [4],
D7170 [5], and D6890 [6]. These methods utilize combustion chambers
and require large sample sizes, time-consuming measurements, and
expensive equipment, making them impractical for on-site or real-time
monitoring. However, recent advancements in analytical techniques
have explored alternative approaches for DCN prediction, including
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nuclear magnetic resonance (NMR) spectroscopy [7] and infrared spec-
troscopy [3,8,9]. Despite their effectiveness, these techniques require
bulky instruments and complex data analysis procedures, limiting their
applicability in portable and real-time scenarios.

Time-domain NMR (TD-NMR) is a compact and versatile variant of
NMR spectroscopy that enables the measurement of the 𝑇2 relaxation
curve, a signal that characterizes the decay of nuclear magnetization
in a sample [10]. By analyzing 𝑇2 relaxation curves using simple
regression techniques and machine learning (ML) algorithms, valuable
insights can be gained into the molecular structural characteristics and
physical properties of a sample [11,12], including the DCN [13]. The
ability to predict the DCN of jet fuels using a custom, compact TD-
NMR system offers several significant advantages. Firstly, it provides
a rapid and efficient method for evaluating the ignition characteristics
of jet fuels, enabling real-time monitoring and quality control during
fuel production and use. Secondly, the compact nature of the TD-NMR
system allows for portability, making it suitable for on-site or even
in-situ measurements within an aircraft. This work demonstrates that
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Fig. 1. The compact NMR system used in this work. (a) The desktop setup with primary components and subsystems annotated. (b) The system schematic showing components
on custom-printed circuit boards and external components involved in signal processing and amplification.
when compared to ASTM standards [4–6], sample sizes required for
a TD-NMR method can be reduced from 100–400 mL to as small as
0.1 mL, and the time for data collection is lowered from 20–30 min to
under 1 min.

ML models have been implemented to predict cetane number and
DCN for a large array of jet fuels. However, training datasets have
consisted of NMR spectroscopic data [14], physical properties of the
fuels [15], and functional group data [16]. There are currently no
methods that use only the 𝑇2 relaxation curves of jet fuels to predict
DCN. While 𝑇2 curves contain structural information, they are difficult
to interpret given their low resolution. By applying ML algorithms,
however, features can be easily extracted from 𝑇2 relaxation curves,
and the relative importance of different features can be estimated
using simple analysis techniques [17,18]. Such steps are crucial for
prioritizing the most influential variables in a regression model. In
this work, random forests are used to regress DCN from 𝑇2 relaxation
curve features. Random forests are a class of highly interpretable ML
models [19] that exhibit strong performance on small datasets [20,21].
Hence, the decision to utilize random forests over other ML mod-
els, specifically artificial neural networks, is motivated by the limited
available training data and an attempt to avoid overfitting.

The contributions of this work are threefold: (1) the custom TD-
NMR system capable of rapidly acquiring relaxation data from liquid
samples containing vital structural information with high repeatability;
(2) the feature importance analysis for predicting DCN from 𝑇2 relax-
ation curves; and (3) the combined 𝑇2 signal truncation and random
forest approach for estimating the DCN of jet fuels.

2. Hardware, data, and system validation

This section introduces the custom TD-NMR system developed for
this work. NMR relaxometric measurements are discussed, and the
datasets generated for analysis are presented.

2.1. Compact time-domain NMR hardware

The compact TD-NMR system and the schematic for the electronics
and control subsystems are shown in Fig. 1. The Van Hove configuration
of this system is open-source [22]. Waveform generation, calibration
to the optimal Larmor frequency, and data collection and export are
performed by a LabVIEW program. The pictured laptop interfaces with
the system’s hardware through a Thunderbolt cable, while the remain-
der of the custom electronics are linked to the PXI chassis via 50 Ω
cables. All amplification and signal routing components are mounted on
printed circuit boards (PCBs), with the exception of the first-stage low-
noise amplifier and the high-power amplifier. The system is designed
for analytes to be in standard 5 mm tubes.

The configuration of the permanent magnet utilized can be seen in
Fig. 1(a) and consists of two cylindrical dipole magnets enclosed by a
steel yolk [23]. The NdFeB permanent magnets are grade N42 and ax-
ially magnetized, having a diameter of 76.2 mm (3 in) and a thickness
2 
of 25.4 mm (1 in). When positioned 15 mm apart, the bare magnets
generate a measured flux density of 0.5 T. To enhance homogeneity
and elevate flux density within the gap, the disks are enclosed by 1018
carbon steel bars, each with a thickness of 19 mm. Further, 7.5 mm
thick 1018 steel caps are affixed to the magnet surfaces [22]. While
bolstering overall strength and uniformity, the added steel elements
markedly improve the safety of the system by restricting field lines
from having any significant effect beyond the immediate volume of the
magnet. Altogether, a peak flux density of 0.645 T is achieved, a value
that corresponds to a Larmor frequency of 27.5 MHz.

The core electronics essential for NMR signal excitation and detec-
tion are depicted in the schematic of Fig. 1(b). Powering the entire
system is a single 24 V power supply that is channeled into a network
of linear regulators. The regulators step down the 24 V potential to
three levels: 12 V for the initial stage low-noise amplifier, 5 V for
the second stage low-noise amplifier, and 1.8 V for the switch. The
excitation process initiates with a sinusoidal waveform set at −5 dBm
from the waveform generator that is matched to the Larmor frequency.
This signal is divided into two branches using a 2-way, 0◦ power
divider. One branch is routed to the local oscillator (LO) port of the
frequency mixer with a conversion loss of 4.6 dB, while the other is
directed to the absorptive switch equipped with shunt legs terminated
at 50 Ω. The switch’s state is under the control of a pulse generator,
carefully synchronized with the Carr–Purcell–Meiboom–Gill (CPMG)
pulse sequence [24].

The train of pulsed RF signals is passed through a high-power am-
plifier that boosts the power to 35 dBm. The RF pulses are then directed
into the duplexer circuit comprising a pi filter and crossed diodes. The
duplexer, created with lumped elements calibrated to resonate at the
Larmor frequency, serves to (1) shield the sensitive low-noise amplifiers
from potential damage due to high-power pulses, and (2) direct power
towards the probe to reduce losses. The probe configuration includes a
solenoidal coil along with two adjustable tuning and matching capaci-
tors. The solenoid is composed of 8 turns of hand-wound copper wire
insulated with Kapton and has an internal diameter of 5 mm. Ceramic
trimmer capacitors are placed both in series with and across the probe
to match its impedance to 50 Ω. The probe’s quality factor (Q value),
which is a common metric for determining efficient power delivery,
was obtained using a network analyzer and the formula

𝑄 =
𝑓c
𝛥𝑓

, (1)

where 𝑓c is the resonant frequency of the circuit and 𝛥𝑓 is the reso-
nance width at half-power. The Q value for the probe was determined
to be 70, a number that balances efficient power transmission without
complicating frequency optimization during scan preparation. Follow-
ing sample excitation, the microvolt-level NMR response traverses the
duplexer and receives a 40 dB amplification at the first stage low-noise
amplifier. The signal is then subjected to frequency mixing with the
original sinusoid, resulting in a decaying waveform positioned within
the audio frequency range. This waveform undergoes an additional
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Fig. 2. Spin echos from a sample of DI water following the application of a CPMG
pulse sequence. The circled peaks are used to construct the sample’s 𝑇2 relaxation curve.

40 dB amplification before being passed through a 5–15 kHz active
band-pass filter.

Within the NI PXI chassis, three components constitute the signal
generation, control, and data acquisition subsystems. These compo-
nents include a pulse train generator (PXIe-5413), an arbitrary wave-
form generator (PXI-5421), and a 16-bit digitizer (PXI-5922). The
timing and coordination of waveforms are under the control of a
custom LabVIEW program. The initiation of a scan depends on the
rising edge of the pulse train generator, an event that triggers the
switch and initiates the sinusoidal signal that is directed into the power
splitter. For this system, a pulse duration of 7 μs corresponds to a
90◦ flip of the sample’s magnetization. The time gap separating 90◦

and 180◦ pulses, often referred to as the 𝜏 value, is 0.625 ms. Each
scan encompasses a total of 3955 pulses, collectively establishing a
relaxation window spanning 5 seconds. For consistency, the decay
curve of a sample is averaged from four consecutive scans, and a 10-
second delay is observed between scans to ensure complete relaxation
of the sample. The acquisition of four averages of a sample’s decay
curve is thus accomplished in less than one minute. If it is desired
that total acquisition time be further reduced, this can be achieved by
shortening the delay between successive scans and/or acquiring fewer
than four averages of a sample’s decay curve.

The LabVIEW program is configured to identify and graph the
peak voltage value associated with each spin echo. These voltages
decay exponentially over time and form the 𝑇2 relaxation curve of
the sample. Fig. 2 displays three spin echoes captured following the
application of one 90◦ and two 180◦ RF pulses to a sample of DI
water. A signal-to-noise (SNR) ratio of 25 dB was measured for a single
scan. While one might anticipate diminishing amplitudes for successive
echoes in Fig. 2, initial echoes exhibit amplitude fluctuations due to
phase discrepancies between the 90◦ and 180◦ RF pulses. However,
due to phase normalization, these fluctuations diminish considerably
after several successive 180◦ pulses. Furthermore, the process is refined
by averaging multiple scans, ultimately culminating in the synthesis of
the final decay curve. To streamline user interaction, a graphical user
interface (GUI) has been developed. The GUI serves as the system’s
front end, enabling users to adjust parameters, view acquired decay
curves, and export data for further analysis.

It is important to note that the system’s magnetic field strength
is influenced by a temperature shift gradient of −800 ppm/K. There-
fore, an essential task before each scan is to identify the optimal
3 
Table 1
The 12 pure hydrocarbon and 17 jet fuel samples used for dataset generation and
analysis. Reported DCN values are subject to small uncertainties (approximately ±1).

Hydrocarbons Jet fuels

Name DCN Name POSF DCN

toluenea 6.0 Gevo-ATJ 10 151 15.5
1,3,5-trimethylbenzene 8.0 JP-8/Gevo-ATJa 10 153 30.5
iso-cetanea 14.2 Sasol IPKa 7629 31.3
iso-octanea 18.9 Shell CPK 13 690 37.2
n-propylbenzene 19.5 JP-8/IPK 7718 40.0
methylcyclohexane 22.5 JP-5 10 289 40.9
n-butocyclohexanea 47.8 CN40b N/A 42.0
n-heptanea 56.0 CN50b N/A 53.4
n-octane 64.4 Jet-A 4658 47.1
n-decane 66.4 JP-8a 6169 47.3
n-hexadecane 73.5 JP-8 10 264 49.6
n-dodecane 100.3 Jet-A 10 325 50.0
– – JP-8/HRJ Tallow 7719 53.3
– – HRJ Tallowa 6308 58.1
– – Shell SPK 5729 58.4
– – S-8a 4734 58.7
– – HRJ Camelina 7720 58.9

a Reprobed for model validation.
b Reserved for model testing.

operating frequency. This is accomplished through a LabVIEW pro-
gram which performs both coarse and fine estimations of the Larmor
frequency. For coarse estimation, ambient temperature is measured
with a thermocouple, and the Larmor frequency is estimated using a
temperature-to-frequency profile developed through extensive testing.
To refine this estimate, a frequency sweep is conducted around the
estimated Larmor frequency, and the optimal operating frequency is
selected as the one maximizing SNR. Beyond optimal frequency identi-
fication, no additional shimming is required as the system acquires data
in the time domain. In contrast to the high-resolution data obtained
via NMR spectroscopy, the low-resolution of the presented open-source,
compact TD-NMR system [22] is a key aspect of this work.

2.2. Considered datasets

Table 1 summarizes the two sets of samples considered for analysis.
The first set consists of 12 pure hydrocarbons, including aromatics,
cycloalkanes, and alkanes, with DCNs ranging from approximately 6
to 100. The second set is a collection of 17 jet fuels with DCNs in the
range of approximately 15 to 60. A training dataset was generated by
acquiring the 𝑇2 relaxation curve of each sample three times. However,
the 𝑇2 curves of CN40 and CN50 were not acquired for training, as these
samples were reserved for testing the ability of models to generalize
to new data. To augment the training dataset, the three 𝑇2 curves of
each sample were averaged pair-wise, synthesizing additional relax-
ation curves that were assigned the same DCN as their constituents.
Altogether, 72 hydrocarbon and 90 jet fuel 𝑇2 curves were produced for
training. A validation dataset was generated by probing ten randomly
selected hydrocarbon and jet fuel samples from Table 1 five times.
While the samples used for validation are present in the training
dataset, the 𝑇2 curves used for validation were acquired separately and
thus are distinct from those used for training. All of the data used in
this work is provided as a supplement to this article and is publicly
available [25] under the ‘‘0.645_Tesla_magnet’’ sub-dataset.

2.3. Hydrogen-to-carbon ratio

The hydrogen content in fuel and hydrocarbon analysis holds a
large significance as it directly influences combustion characteristics.
For example, the hydrogen-to-carbon (H/C) ratio serves as a key in-
dicator of specific energy density for jet fuels [26]. In the case of
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Fig. 3. Hydrogen density vs initial signal amplitude for 12 pure hydrocarbons and
eight mixtures of hydrocarbons with 1:1 mass ratios.

petroleum-derived jet fuels, higher hydrogen content (H/C ratio) cor-
responds to less aromatic content, a balance indicative of improved
ignition propensity and reduced particulate emissions. Furthermore, the
blending of sustainable aviation fuels with petroleum-derived jet fuels
yields increased hydrogen content, thus reducing particulate emission
considerably [27]. A thorough understanding of hydrogen content is
therefore essential for optimizing fuel formulations, ensuring efficient
combustion, and minimizing environmental impacts.

For a general 𝑇2 relaxation signal, the signal-to-noise ratio is de-
scribed by

SNR ∝ 𝑁 𝐴 𝑇 −1 𝐵3∕2
0 𝛾exc 𝛾

3∕2
obs 𝑇 ∗

2 𝑛1∕2s , (2)

where 𝑁 is the number of spins, 𝐴 is the abundance of active spins,
𝑇 is temperature, 𝐵0 is the static magnetic field strength, 𝛾exc and 𝛾obs
are the gyromagnetic ratios of the excited and observed spins, 𝑇 ∗

2 is the
effective transverse relaxation time, and 𝑛s is the number of scans for a
given sample [10,28]. Note that the only sample-dependent parameter
is the number of spins, or hydrogen density, so the initial amplitude of
a 𝑇2 relaxation signal is directly proportional to the sample’s hydrogen
content. To validate the developed compact NMR system, a plot of
hydrogen density against initial signal strength was generated using
the 12 hydrocarbons in Table 1 and eight mixtures with 1:1 mass
ratios. The theoretical hydrogen density of each sample was calculated
according to
𝜌H =

𝜌s𝑁H
𝑀w

, (3)

where 𝜌s is mass density, 𝑁H is hydrogen number, and 𝑀w is molecular
weight. Five scans (averages) were performed with the NMR system for
consistency. The resulting plot is shown in Fig. 3, where the clear linear
relationship is consistent with the proportionality expressed in Eq. (2).

2.4. T2 relaxation

𝑇2 relaxation data plays a key role in unraveling the structural
intricacies and chemical bond groupings within hydrocarbon samples.
Because hydrogen nuclei within a hydrocarbon molecule experience
distinct magnetic environments, 𝑇2 relaxation time can provide insights
into molecular mobility and even interactions within the molecular
structure itself. Shorter 𝑇2 relaxation times are indicative of restricted
molecular motion, often associated with denser or more complex struc-
tures. Conversely, longer 𝑇2 relaxation times suggest greater molecular
mobility, a characteristic of less constrained or simpler structures.
4 
Fig. 4. 𝑇2 relaxation curves for various pure hydrocarbons constructed from a CPMG
sequence comprised of 3955 total spin echos.

Hence, by analyzing 𝑇2 relaxation data, one can detect subtle variations
in a hydrocarbon’s molecular composition, identify specific chemi-
cal moieties, and correlate relaxation times with particular structural
features or bond groupings. This information is invaluable for char-
acterizing hydrocarbons, understanding their behavior in diverse envi-
ronments, and optimizing their applications in various industrial pro-
cesses, including the formulation of advanced fuels and petrochemical
products.

A 𝑇2 relaxation curve can be modeled as

𝑀xy(𝑡) = 𝑀0 exp(−𝑡∕𝑇2), (4)

where 𝑀xy(𝑡) is the net magnetization of spins in the transverse plane,
𝑀0 is the thermal equilibrium magnetization, and 𝑇2 is the primary
relaxation time. For hydrocarbons, it is well established that 𝑇2 time
correlates with hydrogen number [29]. In particular, increased molec-
ular size corresponds to reduced spacing between spins, an effect that
decreases relaxation time. To further validated the proposed TD-NMR
system, the 𝑇2 time of each hydrocarbon in Table 1 was plotted against
its hydrogen number. Primary 𝑇2 relaxation times were identified by
fitting first-order exponentials to the acquired decay curves. Fig. 4 pic-
tures the relaxation curves of four representative hydrocarbon samples,
while Fig. 5 illustrates the dependence of 𝑇2 time on hydrogen number.
It can be seen that the measured relaxation times decrease linearly
with hydrogen number, a result that is consistent with established
research [10].

3. Methodology

This section introduces the interpretable machine learning tech-
niques employed for relaxometric data analysis. A procedure for es-
timating feature importance is summarized, and random forests are
trained for DCN prediction on both pure hydrocarbon and jet fuel
samples.

3.1. Explainable machine learning approach

Fig. 6(a) outlines the utilized process for estimating DCN from
raw 𝑇2 relaxation data. In this pipeline, the random forest is the
interpretable machine learning methodology that takes as input 𝑇2 re-
laxation curve features and outputs an inferred DCN [19]. The scheme
requires minimal data preprocessing and is overall computationally
straightforward. Fig. 6(b) illustrates the associated training procedure
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Fig. 5. Relationship between 𝑇2 time and hydrogen number for 12 pure hydrocarbon
samples.

for fitting random forests to 𝑇2 relaxation data. The specifics of hyper-
parameter tuning and feature importance estimations are detailed in
later sections. For comparison, models are trained for DCN prediction
using various subsets of the training data feature space, and perfor-
mance is analyzed on the basis of root mean square error (RMSE).
Given 𝑁 observations, the RMSE between true DCN and model output
is computed using

RMSE =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝑦𝑖 − �̂�𝑖)2, (5)

where 𝑦𝑖 and �̂�𝑖 are true DCN and model-projected DCN for the 𝑖th
observation, respectively.

Table 2 reports the ten standard, physically interpretable time-
domain signal metrics investigated in this work. The features are com-
puted using first-order exponentials fit to the relaxation curves and
include exponential amplitude and decay rate, statistical averages,
higher-order moments, and peak-related metrics. Note that not the
entire duration of a signal is considered for feature computation. This
choice was motivated by Fig. 7, where the natural logarithm of select
hydrocarbon and jet fuel 𝑇2 curves are shown to flatten around −5 on
a log-scale (<10 mV); it is at this point that the NMR signal becomes
indistinguishable from noise. To exclude this latter portion of signals
from influencing feature values and consequently model predictions,
𝑇2 relaxation curves are truncated after decaying to a fraction of their
initial amplitude. For a relaxation curve with 𝑀xy(0) = 𝑀0, only the
first 𝑡c-seconds of the signal are utilized for feature computation, where
𝑀xy(𝑡c) = 𝛼 𝑀0 for some predetermined 𝛼 satisfying 0 < 𝛼 < 1. During
training, the truncation fraction 𝛼 is treated as an additional parameter
to be optimized.

Feature-feature plots for all 𝑇2 curves within the training dataset
were generated for initial feature exploration and are shown in the
appendix (Fig. A.1). Plots of a feature against itself have been replaced
by a histogram of the feature’s distribution. In general, the histograms
of pure component feature observations appear more disjoint than
their jet fuel counterparts. Hence, it is expected that the regression
of DCN for hydrocarbons will be more straightforward than for jet
fuels, a projection that follows from the comparatively complex struc-
ture of hydrocarbon-derived fuels. See the appendix (Appendix A) for
additional information.

3.2. Data-driven feature analysis

To estimate the relative importance of the ten signal features con-
sidered for DCN regression, separate ensembles of bootstrap aggregated
5 
Table 2
Considered 𝑇2 relaxation curve features with associated interpretations and formulas.
Here 𝑥 represents the data points constituting a sample’s 𝑇2 relaxation curve.

Feature Interpretation Formula

amplitude initial signal strength 𝑀0

decay rate 𝑇2 relaxation rate 1∕𝑇2
mean average value 1

𝑁

∑𝑁
𝑖=1 𝑥𝑖

standard deviation spread around the mean
√

1
𝑁

∑𝑁
𝑖=1(𝑥𝑖 − �̄�)2

root mean square average power
√

1
𝑁

∑𝑁
𝑖=1 𝑥

2
𝑖

shape factor signal shape 𝑥rms∕�̄�

kurtosis tail length
1
𝑁

∑𝑁
𝑖=1 (𝑥𝑖−�̄�)

4

[ 1
𝑁

∑𝑁
𝑖=1 (𝑥𝑖−�̄�)2 ]2

skewness signal asymmetry
1
𝑁

∑𝑁
𝑖=1 (𝑥𝑖−�̄�)

3

[ 1
𝑁

∑𝑁
𝑖=1 (𝑥𝑖−�̄�)2 ]3∕2

impulse factor ratio of amplitude to mean 𝑀0∕�̄�

crest factor ratio of amplitude to RMS 𝑀0∕𝑥rms

(bagged) regression trees were trained for DCN prediction using the
hydrocarbon and jet fuel training data. Bagging is a method in which
a random forest is trained by fitting weak learners (individual trees) to
randomly sampled subsets of the training data. The feature observations
not included in these subsets are called out-of-bag observations and
can be used to evaluate model performance during training. Addi-
tionally, permuting out-of-bag observations is a common technique
for feature importance analysis [30]. The process is straightforward:
permute the out-of-bag observations for each feature and observe the
resulting changes in model response. The greater the impact of feature
permutation on model error, the more important that feature is in the
regression model. This procedure is applied across all weak learners
and is summarized in Algorithm 1.

Training loops were implemented to identify the optimal truncation
amplitude for feature computation, and Bayesian optimization algo-
rithms from MATLAB’s Statistics and Machine Learning Toolbox [31]
were used to automatically tune the following hyperparameters: forest
size, learning rate, minimum leaf size, maximum number of splits, and
number of predictors to sample. Following the procedure shown in
Fig. 6(b), models were trained twice on both the hydrocarbon and jet
fuel training data. Between the first and second rounds of training,
the only parameter that was varied was the node-splitting technique,
which was switched from a curvature test to an interaction test to
discern the potential for interactions among the investigated features.
The curvature algorithm conducts a chi-square test of independence
between each feature and the response, splitting nodes according to

Algorithm 1 Estimate out-of-bag predictor importance.
1: procedure estimatePredictorImportance(𝑅,𝐷)
2: 𝑅: random forest
3: 𝐷: training data
4: 𝐼𝑖: importance of 𝑖th predictor
5: for tree 𝑡 ∈ {1,… , 𝑇 } do
6: obtain subset of predictors used to fit 𝑡, 𝑝 ⊆ {1,… , 𝑃 }
7: 𝜖𝑡 ← out-of-bag error
8: for 𝑝𝑖 ∈ 𝑝 do
9: 𝑟𝑖 ← randperm(𝑝𝑖)

10: 𝜖𝑡𝑖 ← model error
11: 𝛿𝑡𝑖 ← 𝜖𝑡𝑖 − 𝜖𝑡
12: end for
13: 𝛿𝑖 ← mean(𝛿𝑖)
14: 𝜎𝑖 ← stdev(𝛿𝑖)
15: 𝐼𝑖 ← 𝛿𝑖∕𝜎𝑖
16: end for
17: end procedure
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Fig. 6. Visual summary of the interpretable machine learning approach. (a) Flowchart depicting steps for inferring DCN from raw 𝑇2 relaxation data. (b) Random forest training
workflow for hyperparameter tuning and feature importance estimations.
Table 3
Averaged out-of-bag feature importance estimates obtained via fitting loops employing
both curvature and interaction node-splitting techniques, where a higher number infers
greater importance. The features are ordered in alignment with Table 2.

Feature Importance

Hydrocarbons Jet fuels

Curvature Interaction Curvature Interaction

amplitude 0.887 0.801 0.576 0.921
decay rate 2.039 2.242 1.256 2.307
mean 0.503 0.418 0.556 0.756
std. dev. 0.336 0.299 0.424 0.543
RMS 0.160 0.132 0.417 0.497
SF 0.070 0.062 0.111 0.064
kurtosis 0.512 0.602 0.359 0.429
skewness 0.236 0.238 0.241 0.281
IF 0.079 0.057 0.078 0.063
CF 0.077 0.045 0.063 0.040

the predictor that minimizes 𝑝-value. The interaction algorithm op-
erates similarly but also performs a chi-square test of independence
between each feature and all other features, splitting nodes based on
the predictor that minimizes 𝑝-value for both tests.

Upon completing a full training loop, feature importance estimates
were averaged across all models to capture general trends in the data,
ensuring that the results are unbiased by the truncation fraction used
for feature computation. The averaged feature importance estimates are
presented in Table 3, where larger values indicate greater importance.
For both hydrocarbons and jet fuels, 𝑇2 decay rate appears as the most
important predictor of DCN. This result is expected as the relaxation
rate of a sample is closely tied to molecular structure. Initial signal
strength (amplitude) and sample mean follow as the second and third
most influential variables, respectively. As anticipated, highly corre-
lated features such as shape, impulse, and crest factor receive similarly
low importance estimates. For hydrocarbons, there is a tendency for
predictors to be assigned higher importance when using the curvature
test for node splitting. However, this is not the case for jet fuels, where
features are systematically assigned greater importance when using the
interaction test to split nodes. This suggests that complex interactions
occur upon the conglomeration of pure components for fuel synthesis,
a result reflected in the interaction among extracted features.

To further assess feature importance, partial dependence plots were
generated for all models trained on the hydrocarbon and jet fuel 𝑇
2
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relaxation data. A partial dependence plot visually depicts how the
output of a regression model varies with each of its input features [32].
Letting 𝑋 denote the set of feature inputs to a regression model 𝑓 (⋅), the
partial dependence of 𝑓 (⋅) on a subset of its input features, 𝑋S ⊂ 𝑋, is
computed by holding the predictors in 𝑋S constant and marginalizing
over all other predictors in 𝑋C (i.e., the complementary set of 𝑋S). For
𝑁 total feature observations, assuming that each observation is equally
likely, partial dependence is estimated as

𝑓𝑆 (

𝑋S) = 1
𝑁

𝑁
∑

𝑖=1
𝑓
(

𝑋S, 𝑋C
𝑖
)

, (6)

where 𝑓
(

𝑋S, 𝑋C
𝑖
)

is the output of the regression model for the inputs
𝑋S and the 𝑖th observation within 𝑋C [31,32]. Fig. 8 shows normalized
partial dependence plots generated from averaged model outputs on
the hydrocarbon and jet fuel 𝑇2 relaxation data. The horizontal axes
display feature values, normalized so that differing variances among
the features are not exacerbated. The vertical axes depict regressed
DCN, also normalized to capture trends in model outputs. The plots
elucidate findings in Table 3 and Fig. A.1. Namely, 𝑇2 decay rate not
only varies the most among samples, but it also performs the best
at driving changes in estimated DCN. Moreover, there exists a clear
disparity in feature variance between the hydrocarbon and jet fuel
relaxation data.

4. Results and discussion

This section reports results and provides a discussion of their inter-
pretation.

4.1. Model DCN predictions

Fig. 9 displays model predictions on the validation dataset, where
the sample mean of predictions have been plotted along with standard
deviation (error) bars. Notably, the most inaccurate DCN predictions
are for those fuels with low DCN. This inaccuracy is likely due to
the distribution of jet fuel DCNs in the training dataset, where only
four of the 15 fuel samples have a DCN below 40. Thus, via one or
more of the following approaches, future work will focus on improving
model predictions for jet fuels with low DCN: (1) extending the training
dataset to include additional fuel samples with small DCN; (2) gener-
ating synthetic 𝑇 relaxation data having features statistically similar
2
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Fig. 7. Natural logarithm of select 𝑇2 curves. (a) Four pure hydrocarbon samples. (b)
Four jet fuel samples.

to those fuels with low DCN; or (3) retraining models using a stratified
sampling approach, where additional weight is given to models trained
on low-DCN subsets of the training data.

The proposed interpretable ML approach proves highly effective at
inferring DCN from visually similar 𝑇2 curves. For example, consider
Fig. 10 which shows the relaxation curves acquired from CN40 and
CN50, i.e., the two test fuel samples not used during training. The decay
curves of the two samples not only appear similar, but the features
computed from their relaxation curves vary by (on average) less than
one part-per-hundredth. Yet, using the compact TD-NMR system in
conjunction with a random forest trained on only 162 𝑇2 curves, model
predictions for both samples are within ±2 of true DCN, achieving a
total RMSE of just 0.96 DCN. These results are detailed in Table 4 and
indicate the ability of the model to infer the DCN of novel jet fuel
samples.

4.2. Discussion on DCN regression

Compared to predicting on pure components, considering a smaller
fraction of 𝑇 curves improves performance for jet fuel DCN regression.
2
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Fig. 8. Normalized partial dependence plots generated from averaged model outputs.
(a) Random forests trained on hydrocarbon 𝑇2 data. (b) Random forests trained on jet
fuel 𝑇2 data.

Table 4
Summary of model predictions on the validation and test jet fuels.

Fuel DCN

Name POSF True Predicted Error

HRJ Tallow 6308 58.1 57.4 0.7
JP-8/Gevo-ATJ 10 153 30.5 37.5 7.0
JP-8 6169 47.3 47.0 0.3
S-8 4734 58.7 58.4 0.3
Sasol IPK 7629 31.3 40.6 9.3
CN40 N/A 42.0 42.6 0.6
CN50 N/A 53.4 54.6 1.2

For example, truncating signals after decaying to 13%–15% yielded the
lowest RMSE for hydrocarbon predictions, while a range of 23%–25%
was optimal for jet fuels. This difference can be ascribed to the disparity
in variance between hydrocarbon and jet fuel 𝑇2 decay rates. To allow
for more resolution in the estimate of a sample’s relaxation time, a
longer duration of the signal should be considered. Consequently, the
optimal truncation fraction for pure hydrocarbons is less than that for
jet fuels.

Lastly, DCN regression from 𝑇2 relaxation data exhibits sensitivity
to same-sample feature differences arising from small irregularities in
setup conditions. In fact, instances were observed during training and
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Fig. 9. True and predicted DCNs for the validation samples, where each data point
corresponds to the average of five individual predictions. (a) Hydrocarbon RMSE: 3.08.
(b) Jet fuel RMSE: 5.21.

Fig. 10. 𝑇2 relaxation curves probed from two jet fuel samples not exposed to models
during training.
8 
validation where a model would output different estimates of DCN for
the same sample. The lack of model robustness against such feature
differences is likely due to the limited available training data. There
are two natural steps towards achieving more consistent predictions:
(1) enhancing system regularity through improved temperature control,
hardware standardization, and noise reduction; and (2) extending the
existing training and validation datasets to include the 𝑇2 relaxation
curves of additional jet fuel samples.

5. Conclusions

This work presents a compact TD-NMR system for acquiring jet
fuel 𝑇2 relaxation curves. The system integrates a permanent magnet
with custom electronics and control hardware, including a GUI for easy
Larmor frequency tuning and signal acquisition. Validation experiments
using pure hydrocarbon samples demonstrated the system’s ability
to rapidly acquire 𝑇2 relaxation data containing valuable structural
information. Datasets were generated for DCN regression from 𝑇2 re-
laxation data, and the metric of out-of-bag error was used to assess the
relative importance of investigated 𝑇2 curve features. A model trained
on fewer than 200 observations was then tested using two novel jet
fuel samples, yielding an RMSE of just 0.96 DCN. While the proposed
approach for DCN prediction shows significant promise, it is sensitive
to small feature differences and thus prone to inconsistency. To that
end, future work will focus on training models using a larger array of
jet fuels to improve prediction consistency, especially for fuels with
comparatively low DCN. Additionally, system enhancements will be
explored, including the incorporation of a flow-through module for
accelerated, real-time probing.
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Appendix A

Fig. A.1 shows feature-feature plots for all hydrocarbon and jet
fuel feature observations within the training dataset, where plots of a
feature against itself have been replaced by a histogram of the feature’s
distribution. For reference, a measure of the correlation between each
pair of features is reported via the Pearson correlation coefficient
defined as

𝜌(𝑥, 𝑦) = cov(𝑥, 𝑦)
, (A.1)
𝜎𝑥 𝜎𝑦
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Fig. A.1. Visualization of 𝑇2 curve feature distributions and correlations. (a) Hydrocarbon training data. (b) Jet fuel training data.
where 𝑥 and 𝑦 are feature observations, cov(𝑥, 𝑦) is the covariance of
𝑥 and 𝑦, and 𝜎𝑥 and 𝜎𝑦 are, respectively, the standard deviation of 𝑥
and 𝑦. While many of the considered features are highly correlated
and consequently redundant predictors, all features are considered for
analysis as to (1) discern the potential for interaction between pairs of
predictors and (2) validate the results of feature importance estimates.
Attention is drawn to the clear differences in feature distributions
between the hydrocarbon and jet fuel 𝑇2 data.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.snb.2024.137018.
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Data availability

The data is uploaded with the paper and shared on GitHub.
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